The Electronic Response of SMD Integrated Silver-Coated Vectran Yarn

2022-05-14 20:00:19 By : Mr. jerry zhao

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

In a recent study published in the journal Materials, researchers studied the effects of different external factors such as strain, temperature, abrasion, washing, and solder pad size on the electrical resistance of surface-mounted electronic device (SMD)-integrated silver-coated Vectran (SCV) yarn.

Study: Electrical Properties of Surface Mount Device Integrated Silver Coated Vectran Yarn . Image Credit: Chokniti Khongchum/Shutterstock.com

To obtain the E-yarn, a vapor phase reflow soldering method was used to integrate the SCV yarn smart textile into an SMD resistor. They found that the E-yarn with 68 Ω SMD resistor and conductive SCV thread demonstrated the highest electrical resistance and power of 72.16 Ω and 0.29 watt per 0.31 m length, respectively. Also, the above-mentioned external factors had a significant effect on the electrical resistance of the SCV E-yarn.

Silver coated Vectran (Liberator® 40) (A), 68 Ω Cermet resistor SMD (B). Image Credit: Simegnaw, A et al., Materials

Vectran yarn is a fiber spun from aromatic polyester-based liquid-crystal polymer through the polycondensation of 4-hydroxybenzoic acid and 6-hydroxynapthalene-2-carboxylic acid. A silver coating on this fiber enables it for varieties of electronics applications as a smart textile.

Smart textiles are textiles with advanced modifications that enable them to sense and respond to external stimuli. These external stimuli are mostly electronic or photonic in nature. Electronic yarn or E-yarn are used in the healthcare sector, entertainment, fashion, on-body communication, security monitoring, sports activity tracking, and space suits.

Furthermore, microelectronics devices can be easily integrated into these smart textiles through weaving, embroidering, sewing, hybrid soldering, 2D screen printing, 3D printing, and in the form of electrically conductive inks. Also, the mechanical connectors between these smart textiles and microelectronics devices are mostly bolted buttons, socket buttons, hooks, and loops, ribbon cable connectors, crimp connectors, crimp flat-pack connectors, and snap buttons. However, the size of these electronics devices should not be large, otherwise they will damage the fabrics.

The solution to that is the incorporation of SMDs, which are very small, to smoothly embed them into any fabrics without any noticeable bulging or loading on the fabrics.

In this study, researchers fabricated an SCV E-yarn using (i) an SCV yarn with two thin layers of silver coatings to make it conductive, (ii) a 68 Ω Cermet resistor with 1% tolerance, 0.27 mm length, and 0.04 mm solderable metallic terminal pads, and (iii) a carbon conducive-based solder paste. They used a temperature-controlled vapor phase reflow soldering method to connect the metallic terminal pads of the SMD to the conductive SCV yarn with the help of a wooden cupboard, which tightly held them together during the process of soldering.

Subsequently, the effect of the gauge length, strain, abrasion, temperature, washing, and solder pad overlap thickness on electrical resistance was measured and algebraically added, followed by measurement of total power loss using the total heat dissipation calculation method.

Bench top of the reflow oven (A), temperature profile of the reflow oven (B). Image Credit: Simegnaw, A et al., Materials

The electrical resistance increased linearly with an increase in clamping gauge length at a constant rate per unit length of 2.802 Ω/m. Also, the correlation coefficient of 0.994 and the positive probe factor indicated a significant influence of gauge length on the electrical resistance. Moreover, the relative electrical resistance showed a similar linear relationship with the cyclic strain with a correlation coefficient of 0.99, and the effect was more significant when the strain reached 0.05%.

Furthermore, the effect of abrasion was highly significant owing to the formation of cracks, scratches, protruding fibers, and breakage in the outer metallic layer of the SCV conductive yarn, which was evident from optical microscope observations. The noticeable change in electrical resistance started at the 150-abrasion cycle for E-yarn and at the 225-abrasion cycle for SCV. Subsequently, the effects of mechanical abrasion were increased by 240.9% and 114.6% of the SCV E-yarn and SCV conductive yarn, respectively, after the 800-abrasion cycles. A protective coating of thermoplastic polyurethane (TPU) or silicone encapsulation alleviated this issue.

The effect of temperature on electrical resistance had two phases i.e., temperatures below 50 ℃ and temperatures between 50 ℃ to 100 ℃. Up to 50 ℃, the electrical resistance increased very slowly, but after crossing this critical temperature, resistance increased rapidly. The electrical resistance of the SCV conductive yarn and E-yarn between the temperature range of 50 °C to 100 °C increased by 47.49% and 57.99%, respectively.

The electrical resistance of SCV conductive yarn and E-yarn after each washing cycle increased by a magnitude of 6% and 10%, respectively, between 0 to 10 wash cycles. Moreover, due to the formation of an amorphous region in the micro pad connector, the resistance of E-yarn slightly increased from 1.588 to 2.125 Ω when the solder joint pad overlap length increased from 0.5 to 5 mm.

Measuring of length-dependent resistance (four-point clamping device). Image Credit: Simegnaw, A et al., Materials

The researchers fabricated an SCV E-yarn setup using a vapor phase reflow soldering method to integrate an SCV conductive yarn and an SMD Cermet resistor.

From all measurements, it was evident that the gauge length and strain linearly increased the electrical resistance. Moreover, after certain critical values, abrasion, temperature, and number of washing cycles had abruptly significant influence on the electrical resistance of both SCV E-yarn and SCV conductive yarn. However, the effect of solder joint pad overlap length was minor. The study suggested coating the SCV E-yarn setup with a protective coating of TPU.

Simegnaw, A., Malengier, B., Tadesse, M., Rotich, G., Van Langenhove, L., Study the Electrical Properties of Surface Mount Device Integrated Silver Coated Vectran Yarn. Materials 2022, 15, 272. https://www.mdpi.com/1996-1944/15/1/272

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Bismay is a technical writer based in Bhubaneshwar, India. His academic background is in Engineering and he has extensive experience in content writing, journal reviewing, mechanical designing. Bismay holds a Masters in Materials Engineering and BE in Mechanical Engineering and is passionate about science & technology and engineering. Outside of work, he enjoys online gaming and cooking.

Please use one of the following formats to cite this article in your essay, paper or report:

Prakash Rout, Bismay. (2022, January 04). The Electronic Response of SMD Integrated Silver-Coated Vectran Yarn. AZoM. Retrieved on May 14, 2022 from https://www.azom.com/news.aspx?newsID=57803.

Prakash Rout, Bismay. "The Electronic Response of SMD Integrated Silver-Coated Vectran Yarn". AZoM. 14 May 2022. <https://www.azom.com/news.aspx?newsID=57803>.

Prakash Rout, Bismay. "The Electronic Response of SMD Integrated Silver-Coated Vectran Yarn". AZoM. https://www.azom.com/news.aspx?newsID=57803. (accessed May 14, 2022).

Prakash Rout, Bismay. 2022. The Electronic Response of SMD Integrated Silver-Coated Vectran Yarn. AZoM, viewed 14 May 2022, https://www.azom.com/news.aspx?newsID=57803.

Do you have a review, update or anything you would like to add to this news story?

AZoM speaks with Dr. Nicola Ferralis from MIT about his research that has developed a low-cost process of creating carbon fibers from hydrocarbon pitch. This research could lead to the large-scale use of carbon fiber composites in industries that have thus far been limited.

In this interview, AZoM speaks with Marco Enger, Senior Tribologist from GGB, to discuss how nano fillers affect transfer films within tribological systems.

Ahead of their talk on green chemistry and profitability in laboratory research at ChemUK 2022, AZoM spoke with Jacqueline Balian from Gambica and Martyn Fordman from Asynt about encouraging sustainability in the chemical industry.

COXEM's CP-8000+ is a powerful cross section polishing tool that uses an argon ion beam to allow precise, advanced sample preparation. Its state-of-the-art technology means the sample is not deformed and does not suffer any kind of physical damage.

This product profile outlines the Evolution™ Pro UV-Vis Spectrophotometers from Thermo Fisher Scientific.

Extrel’s all-new MAX300-RTG 2.0 is the real-time industrial gas analyzer now redesigned with a touch screen.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022